Do Now: Find the value of the expression if x = 2 and y = -1

1)
$$2x - 3y = 7$$

2) y - 2x =
$$(-5)$$

3)
$$x + y = (1)$$

17a) yes, because the problem implies that the height is measured on Ce a year, therefore you only turn One age every year, so you can only have one height for the year. 176) No, because (heightrage)

8.2 Linear Equations in Two Variables

8.F

answers

SWBAT find solutions of equations in two variables.

• SWBAT create representations to communicate mathematical ideas.

Calculators: No

An equation in two variables produces a true statement when the values of x and y are substituted into the equation. The solution is an ordered pair (x, y).

Example: Tell whether the ordered pair is a solution of 2x - y = 5

b) (4, 7)

$$x = 1 \quad y = -3$$

 $2x - y = 5$

X=4 Y=7

(-3) is a solution

(4,7) 15 not a solution

Tell whether the ordered pair is a solution of x - 3y = -1

Find the value of a)that makes the ordered pair a solution of the equation.

1.)
$$y = 2x + 5$$
; (-1, a) $x = -1$ $y = 0$

$$x = 1 + 1$$

$$y = 2x + 5$$

Find the value of a that makes the ordered pair a solution of the equation.

2.
$$3x + y = -1$$
; $(a, 5)$
 $3a + b = -6$
 $3a = -6$
 $3a = -6$

Find the value of a that makes the ordered pair a solution of the equation.

1.
$$6x + 5y = 21$$
; $(a + 2, -3)$
 $6x + 5(-3) = 21$ $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x + -15 = 21$
 $6x$

The Hawaiian volcano Mauna Loa has erupted many times. In 1859, lava from the volcano traveled 32 miles to the Pacific Ocean at an average speed of 4 miles per hour. The lava's distance d (in miles) from the ocean thours after it left the volcano can be approximated by the equation d = 32 - 4t

- a. Make a table of solutions for the equation.
- b. How long did it take the lava to reach the ocean?

a. Make a table of solutions for the equation. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
b. How long did it take the lava to reach the ocean?

How can we solve this problem using a graph?

Graph: $y = \frac{1}{2}x + 1$

-	
 	

Graph: y = -x

Horizontal and Vertical Lines

• Horizontal Lines y = b is the horizontal line through (0, b)

Ex.)
$$y = 3$$

Vertical Lines

x = a is the vertical line through (a, 0)

Ex.)
$$x = -2$$

Write the equation in function form (slope-intercept form):

intercept form):
a.)
$$x + 2y = 6$$

b.)
$$-4x + 3y = -3$$

Exit Pass 8.2

Write the equation in function form. Then graph the equation.

$$3x + 2y = -2$$

"Don't blame the sea if you cannot catch a fish."

Working individually or with a partner, complete the workbook.

Workbook pg.

Reflection of Today's Lesson

8.2 Linear Equations in Two Variables

8.F

- SWBAT find solutions of equations in two variables.
- SWBAT create representations to communicate mathematical ideas.

Calculators: No

